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Abstract 
 
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic 
wave incident normal to a stack of films of alternating refractive index, a simple numerical code was 
written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to 
various non- uniform strain conditions including photo-elastic effect in certain cases. 
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1. INTRODUCTION 
Among many uses as a sensing device, the optical fiber Bragg gratings have been used widely as a tool for 
measuring strain in structural testing because of its lightweight and portability. In the simplest form a fiber 
Bragg grating consists of a periodic modulation of the refractive index in a core of a single mode optical 
fiber, where the phase fronts are perpendicular to the fiber’s  longitudinal axis and with grating planes 
having constant period. Light, guided along the core of an optical fiber, will be scattered by each grating 
plane. If the Bragg condition is not satisfied, the reflected light from each of the subsequent planes becomes 
progressively out of phase and will eventually cancel out. If the Bragg condition is satisfied, the 
contributions of reflected light from each grating plane add constructively in the backward direction to 
form a back reflected peak with center wavelength defined by the grating period.  As the grating period is 
changed in a mechanical strain test, the center peak of the reflected wavelength correspondingly changes to 
a new location, and the strain can be deduced.  However, when the strain is large, the local fiber index of 
refraction is changed due to the photo-elastic effect which in turn affects the reflected spectrum. This is the 
underlying principle behind this measurement technology. Since typically, the grating has physical 
dimension of 1~5 mm length, the deformation may not be uniformly distributed across the whole length of 
the grating. In the extreme case whereby the deformation (or strain) is totally randomly distributed and 
large, then there is negligible light reflected at any wavelength. The present work intends to investigate the 
behavior in between the ideal Bragg condition and the negligible reflected light condition, i.e. a well 
behaved non-uniform periodicity condition. In other words, if we modulate the grating period in a 
controlled fashion, we can numerically simulate the reflected spectrum and conversely, once we have the 
reflected spectrum, we would be able to invert the problem and gain some understanding that would be 
highly useful for non-uniform strain measurement. 
 
2. THEORETICAL BACKGROUND 
For the last thirty years, a tremendous number of technical articles have been written on periodic dielectric 
wave-guides and a few representative ones are listed here1-15. On the theoretical side, the most common 
methods fell into either the matrix method, or the coupled-wave method. The use of the matrix method in 
the study of the propagation of plane electromagnetic waves (TEM) through a stratified medium is well 
documented in optics16,17. It is justified to assume a TEM wave in a common optical fiber under the weakly 
guiding condition18. The coupled-wave method has long been used to analyze the characteristics for a 
periodic layered medium because it gives simple analytic expressions. Ref. 13 showed that these two 
methods gave identical results. Ref. 15 asserted that the coupled mode theory is derived as an 
approximation for weak periodic structures. However, we feel that the matrix method has the ability to 
interrogate the grating in a more detailed fashion, thus presenting a better physical picture for describing 
the relationship between grating structure and reflection spectrum. For uniform strain, it is known that a 
compact expression can be readily obtained for the reflected spectrum as a function of grating distance16. 
The matrix method is outlined below following Ref. 17 with minor change of notation. A linear y polarized 
electromagnetic wave propagates at normal incidence on stack of films of individual thickness di (d1 =0) 

  



having refractive index ni.  We assumed the dielectrics films to be non-absorbing. The electric fields in the 
ith layer can be represented as (omitting the part e-iωt ) 
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where ŷ represents a unit vector in the y direction and the quantity  represents a plane wave 

propagating in the positive x direction with an amplitude ; the quantity  represents a plane 

wave propagating in the negative x direction with an amplitude etc. 
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0k cω

 are the refractive index and propagation constant (wave number) respectively in region i   and 

represents the free space wave number. The corresponding magnetic fields  can 
be evaluated as 
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where the media are assumed to be nonmagnetic with . By imposing the condition that the 

tangential components of fields and be continuous at the interface separating ith and i+1th layers, 
we can write  
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where ri  and ti  are the amplitude of reflection and transmission coefficients at the ith interface and are 
given by 
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and Si  is referred to as the transfer function at the ith interface. 
And δ =            (7)                        
Generalizing the analysis for N films and for normal incidence, we have 
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Therefore the amplitude of reflection and transmission coefficients of the N films are given by 
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The reflectivity  and transmittivity  are therefore given by 
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The matrix method mentioned above is applied here to calculate the reflectivity and transmissivity of a 
periodic medium or near periodic medium, i.e., for the case of Bragg grating. The Bragg grating is 
represented by a stack of layers with equal thickness d/2 and with alternating refractive indices 

. The wavelength corresponding to maximum reflectivity corresponds to a free space 
wavelength, λ
( ) and n n+ ∆

 and is given by 
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where d represents the spatial periodicity of the index of refraction. and (
2
n

n
∆

+ )  is the average index of 

refraction of each period. 
 
3. SIMULATION PROCEDURE AND RESULTS   
Based on realistic strain measurements, the following set of parameters are chosen; 
n  =1.45,  ∆n = 10-3, the alternating layers having index of (n+ ∆n) and n,  scanning laser wavelength λ 
=1530 ~1590 nm, grating parameter d=λ/2(n+ ∆n/2). With the information mentioned above and a grating 
of typical length of 1~5 mm, the number of layers in the grating is in the neighborhood of thousands. The 
simulation done here uses 1500 periods (3000 layers). The strain normally is in the range of 10-2 to 10-4 or 
10,000~100  µε,  that corresponds to a peak wavelength shift within 15nm, provided the strain is uniformly 
distributed.  In a realistic situation the strain may not be totally uniform and therefore we can assume some 
simple continuous modulation functions to mimic the grating spacing as a function of grating distance. In 
other words the calculation is performed numerically grating plane by grating plane with each grating plane 
distance changed in a controlled fashion. The simple modulation functions chosen are listed below. 
 
3a. Uniform Strain 
If the unstrained grating period is denoted as d, under strained condition the period changed to d’ as 

'd d dε= +  
where ε is the strain. For ε =10-3, 10-2,and 2x10-2 the reflected spectra are plotted in Fig.1, 2 and 3. Of 
course ε here can be negative which means the deformation is due to compression rather than elongation.  
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 Fig. 1 The spectrum curve for uniform strain ε =10-3 is on the right. The curve on the left is the unstrained spectrum 
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                            Fig. 2 uniform strain ε = 10-2 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1576 1578 1580 1582 1584 1586 1588 1590

wave length nm

re
fle

ct
iv

ity

 
 
                            Fig. 3 uniform strain ε = 2x10-2 

 
For example, in Fig.2 under strain the reflected peak is located at 1565.5 nm which corresponds to a 
wavelength shift due to strain with strained spacing of d’ 
 

' 1565.5 539.6415029 nm
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d
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This verifies the basic principle of Bragg grating technology for strain measurement. 
 

3B. Linear Strain 

  



We assume the strain is a linear function of grating distance x and ε is the maximum strain which occurs at 
the farther end of the grating, at the of length x=L .  

' ( )  xd x d d
L
ε= +  

Because the symmetry associated with the system, we can not differentiate this set up from the set up where 
the maximum strain at the beginning of the grating, i.e., 

     ' ( )  (1- )xd x d d
L
ε= +  

 the reflected light spectrum should be identical. The spectra are plotted in Figs. 4, 5 and 6. 
 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1540 1542 1544 1546 1548 1550 1552 1554 1556 1558 1560

wave legth nm

re
fle

ct
iv

ity

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 linear strain where the maximum strain is at the end of grating ε =10-3 
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Fig. 5 linear strain where the maximum strain is at the end of grating, ε =10-2 
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Fig. 6 linear strain where the maximum strain is at the end of grating, ε =10-1 

 
It is quite likely that in a static measurement the strain may have a linear distribution, especially if the 
Bragg grating covers a larger distance, e.g., 5mm. However if the strain is small, a sharp peak is still 
shown. If the strain increases to the order of 10-2, we have a totally different picture; multiple peaks appear 
in the spectrum. Also the height of the peaks greatly reduced. It is customary to use geometrical means, 
such as weighted average to assign a strain. From Fig. 5 and Fig.2 of uniform strain we can verify that 
indeed the mean value of the wavelength in Fig. 5 predicts the correct strain since half of the maximum 
strain in the linear case is the strain value of the uniform case. If the strain further increases, the peaks of 
the spectrum further reduced and the spectrum tends to get broader. This kind of shape of spectrum usually 
is termed as chirped spectrum19. 
 
3c. The sinusoidal strain distribution 
We assume the strain has a sinusoidal behavior where the maximum strain occurs at the middle point of the 
grating, so the sine function has a period of twice of grating length. 

' ( )   sin xd x d d
L
π

ε= +  

This simulates in the expansion experiments, the middle section stretches the most. If  ε is negative 
implying the middle section of the grating suffers the greatest compression strain. Again the reflected 
spectra are shown in Figs.7, 8 and 9. 
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Fig. 7 strain has a sine curve distribution where the middle section has the greatest strain of 10-3   
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Fig. 8 strain has a sine curve distribution where the middle section has the greatest strain of 10-2   
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Fig. 9  strain has a sine curve distribution where the middle section has the greatest strain of 10-1   
 
As in the linear strain case, the sine curve distribution also presents similar spectrum. Where the strain is 
small (10-3 ), we still see a sharp peak. However if the strain is increased, multiple peaks begin to show up 
and magnitude of the reflected signal is greatly reduced. 
 
3d. Random strain distribution 
We can easily have a random strain distribution by invoking a constant strain multiplied by a random 
number, rand having a value between 0 and 1. 

'   randd d d ε= +  
The reflected spectra for the random case are shown in Figs. (10) and  (11).  
Again when the strain is small we are still able to see a sharp peak even at ε =10-2 . However, when the 
strain reaches to 10-1, we see (or don’t see) that the spectrum is totally changed. Since the intensity is so 
small, the grating response is unrecognizable and in the real world would be mistaken for signal noise. This 
verifies our belief  that based on the fundamental physics principle. 
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Fig. 10 strain has a random distribution where the greatest strain = 10-3   
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Fig. 11 strain has a random distribution where the greatest strain = 10-1   

 
4. MODULATION OF INDEX OF REFRACTION DUE TO STRAIN 
The applied stress to the grating affects not only the period but also the index of refraction due to photo-
elastic effect that may be important depending upon the magnitude of strain. The variation of index of 
refraction in the axial-direction for a fiber subjected to a tensile strain is given by20  

3
11 / 2pn n p ε∆ −      

where  is one of the elements of the photo-elastic constant which has been measured11p 21  
and ε is the local strain. We adopt the value =0.121 throughout the calculation. In the following two 
cases are shown; 

11p

4a. Uniform strain with photo-elastic effect 
We assume a uniform strain is applied to the whole fiber and therefore the Bragg grating core indices are 
changed to . Figs. 12 and 13 show the cases of  ε =10 and pn n n n n+ ∆ + ∆ + ∆ p

-3 and ε =10-2 with 
photo-elastic effect. If we make a careful comparison between Fig. 12 and Fig. 1, we noticed the peak of 
reflected spectrum is shifted toward to the right (higher wavelength) by 0.25 nm with the photo-elastic 
effect considered. Compare Fig. 13 and Fig. 2 for the case ε =10-2 , we found out the peak shifts toward 
right by 2 nm which is rather significant. 
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Fig. 12 uniform strain with photo-elastic effect ε =10-3 
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Fig. 13 uniform strain with photo-elastic effect for ε =10-2 

 
4b. Linear strain with photo-elastic effect 
As we have done before for a linear distribution of the strain but with photo-elastic effect added on, 
however the magnitude of photo-elastic depends on the local strain which varies linearly. Experimentally it 
is hard to situate the Bragg grating sensor unless the sensor is clamped on one end where the strain is zero. 
Figs. 14 and 15 show the reflectivity versus wavelength. Comparing Fig. 15 and Fig. 5, the reflectivity 
spectra have changed greatly. 
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Fig. 14 linear strain with photo-elastic effect for ε =10-3 
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Fig. 15 linear strain with photo-elastic effect for ε =10-2 

 
5. CONCLUSIONS 
Using a well established, simple plane wave matrix theory for simulating a fiber Bragg grating, we have 
obtained the reflected spectra for different non-uniform strain distributions.  Furthermore, we have 
established that large non-uniform strain conditions are responsible for a multi-peaked reflection spectrum.  
Whereas for uniform strain, irrespective of magnitude, all reflected spectra show a unique and well defined 
sharp peak which can be used to infer the strain. Our simulations indicate that for non-uniform strain, the 
multi-peak spectra occur when the strain has reached  to the order of 10-2 or greater. If the strain is small, 
say less than 10-3, non-uniformity is not an important issue; all the reflected spectra would give a sharp 
peak and uniquely determine the strain. However when the strains increase to the order of 10-2, the 
spectrum is broadened and splits into multiple peaks.  In addition, we have demonstrated that the photo-
elastic effect is important when the strain is in this range also.  These considerations must be taken into 
account when determining the strain from the maximum of the reflected spectrum. In the case of linear 

  



  

non-uniform strain the mid point of the spectrum seems to be the correct value to choose but this may not 
be valid for other cases. Finally, when the strains increase beyond 10-2 for a non-uniform grating, the 
reflected signals can be completely lost, which has been observed in some of our experiments22. This is a 
simple and quick numerical simulation to describe the relationship between reflected spectra and grating 
structures. These phenomena can be understood in a qualitative sense, i.e., each grating plane defines a 
reflected and selected wavelength. And when the grating distance is constant, all the reflected waves 
contributed constructively, creating a strong peak uniquely defining the grating distance. But when the 
successive grating distances are off slightly, each distance selects a slightly shifted wavelength. Therefore 
each back-scattered wave contributes non-coherently and the multi-peak spectra are produced. On the other 
hand, it is well known and has been tested here that well defined and distinguishable multi-peaked spectra 
can be obtained by carefully arranging a group of gratings; each group has an identical grating distance 
which defines the peak wavelength. The number of grating periods in each group defines the relative 
reflectivity strength.   
 

References 
 
1.  Shyh Wang, J. Appl. Phys., Vol. 44, No.2, p767 1973. 
2.  D. K. W. Lam and B. K. Garside, Appl. Optics Vol. 20, No. 3 p440 1981. 
3.  Amnov Yariv, IEEE J. Quantum Electron., Vol. QE-9, No. 9, 1973. 
4.  D. Marcuse, B.S.T.J., Vol 52, No. 6, 1973. 
5.  A. W. Snyder and W. R. Young, J. Opt. Soc. Am., Vol. 68, p297, 1978. 
6.  C. Yeh, J. Appl. Phys. Vol. 33, No 11, p3235, 1962. 
7.  J. E. Sipe, L. Poladian and C. Martijn de Sterke, J. Opt. Soc. Am., Vol. 11, No. 4,  
      p 1307, 1994. 
8.  David J. Griffiths and Carl A. Steinke, Am. J. Phys., Vol. 69, No. 2, p137, 2001. 
9.  Makoto Yamada and Kyohei Sakuda, Appl. Optics, Vol. 26, No. 16, p3474, 1987. 
10. Kim A. Winick, Appl. Optics, Vol. 31, No. 6, p 757, 1992. 
11. S. T. Peng, IEEE Trans. Micro. Wave and Tech. Vol. MTT-23, No. 1, p 123, 1975. 
12. M. LeBlanc, S. Y. Huang, M. Ohn and R. M. Meaasres,  J. Opt. Soc. Am., Vol. 21, No. 17, 

p1405,1996. 
13. Boo-Gyoun Kim and Elsa Garmire, , J. Opt. Soc. Am., Vol. 9, No. 1, p 132, 1992. 
14. Pochi Yeh, Amnon Yariv, and Chi-Shain Hong, , J. Opt. Soc. Am., Vol. 67, No.  

 4, p 423, 1977. 
15. U. Bandelow and U. Leonhardt, Opt. Comm., Vol. 101, No. 1,2 , p 92, 1993. 
16.  M. Born and E. Wolf,  “Principles of Optics”, Pergamon Press, Oxford. 1975. 
17. A. K. Ghatak and K. Thyagarajan, “Optical Electronics”,Cambridge Univ. Press,  

              1989. 
18. A. K. Ghatak and K. Thyagarajan, “Fiber Optics”,Cambridge Univ. Press, 1998. 
19. A. Othonos and K. Kalli,”Fiber Bragg Gratings”, Artech House, Inc., 1999. 
20. Zubia, J., Arrue, J., and Mendioroz, A.,Opt. Fiber Technol., 3 (2) pp.162-167, 1997. 

              Zubia, J., Arrue, J., IEE Proc.-Optoelectron., v.144, No. 6, Dec., 1997 
       21. Dixon, R.W. J. App. Phys 38, 5149-5153, 1967. 

              22. Robert Rogowski, private discussion. 
 


	Abstract
	The reflectivity  and transmittivity  are therefore given by
	The matrix method mentioned above is applied here to calculate the reflectivity and transmissivity of a periodic medium or near periodic medium, i.e., for the case of Bragg grating. The Bragg grating is represented by a stack of layers with equal thickne
	3. SIMULATION PROCEDURE AND RESULTS

